Potential Flow

Overview

* For irrotational flow, Xl = 0, which implies that V= V.
* ¢ is a scalar field called the potential flow function.

« If the fluid is incgmpressible, then the continuity equation
impliesthat V-V = 0.

* In this case, the potential flow function satisfies the Laplace
equation, V2¢ = 0.

* We can obtain many velocity fields using the techniques
used to solve Laplace’s equation.

Flow potential
Consider, d¢p = uydx; + udx, + wydxs.

@ is a single valued function iff ﬂ = i and two similar egs. by
ax(dxy  0xy0x, exchanging 1 or 2 by 3.

3] 0.
ﬁ _ ﬂ = (VA u)y = Q; =0, withsimilar egs. for

which is equivalent to
oxp  0x; components 1 and 2.

meaning that, the flow is irrotational (i.e. the vorticity is zero).
For irrotational flows, the velocity field is the gradient of a scalar flow potential ¢:

u{x t} = Vop{x 1},

Velocity field

Given the flow potential, the velocity field is obtained by taking its gradient (recap):

Cartesian coordinates,

Flow potential, incompressible flow

* From the continuity equation, we have

2 Dp
V-u=pVigpg = — —-
’ Ve Dt

« If the flow is incompressible, then
V¢ = 0.

i.e., the flow potential is a solution of Laplace’s equation.

Example (schematic)




Examples (solutions of Laplace’s equation)

Cylinder in a free stream

Airfoil in a free stream —

Back to Laplace’s equation
For irrotational regions of flow: Vip =0

In cartesian coordinates

vo-2¢,

In cylindrical coordinates
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Vip = 1 o(r
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Spherical and mixed coordinates may also be useful.

Spherical Coordinates (r, 6, ¢)
Pty 42, B=cos” (%), of x=rcos g =tan” (%)

Vi +ugiyrud, = 1%, L0, g,
o a0 0 ag

v e 20 1 ) 1 &
o rar Psin6ag\ 96) rsin6dg

Examples from MFM (page 271)

Comparison of potential flow theory and experiments (hele-shaw cell)
and experiments for flows with Re=10° .

(a) Cylindrical

(b) Spherical

Cylindrical and spherical coordinates
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The beauty of this is that we have combined three unknown velocity components (e.g., u, v,
and w) into one unknown scalar field ¢, eliminating two of the equations required for a
solution.

Once we obtain a solution, we can calculate all three components of the velocity field.

The Laplace equation is well known since it shows up in several fields of physics, applied
mathematics, and engineering. Various solution techniques, both analytical and numerical,
are available in the literature.

Solutions of the Laplace equation are dominated by the geometry (i.e., boundary
conditions).

The solution is valid for any incompressible fluid, regardless of its density or its viscosity, in
regions of the flow in which the irrotational approximation is appropriate
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Pressure

Of course we still need a dynamical equation to calculate the pressure field.
This will be given by the Euler equation (this is the form of the Navier-Stokes
equation for irrotational flow — see later).

If gravity is the only body force, then

. v = oo = _
For irrotational regions of flow: P o + (V-VV | =—VP + pg
t

Or in its integrated form, the Bernoulli equation

P

) )

Steady, incompressible flow: -
p

Since the flow is irrotational, we can apply Bernoulli to ANY two points in the
flow domain.
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Kelvin’s circulation theorem

« A fluid that is vorticity free at a given instant is vorticity free at all
times.

* Demonstration: see Faber 120-122 (you may skip this on a first
reading)

* In three dimensions the conservation of vorticity (which corresponds
to the conservation of angular momentum in mechanics) takes a
somewhat subtle form.

* The circulation of a velocity field is defined to be

K{t} = $u{x,t}-dl,

where the line is a closed loop which moves with the fluid.
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Demonstration

%

The loop moves with the flow and thus ..:M‘ \'\'

al

DK _{[Dry ., D)
Dt Dt D¢

The second term is the relative velocity of two nearby
points on the loop and can be written as (du/al)dl.

u-—dl =

D) om aCu-u) 1)
‘o al al dl’d(z“

The second term integrates to zero and the first can be re-written using Euler

Du 1
o {; Vp + V(é’&)]'

Why are the solutions of Laplace’s equation
useful (at all) ?

14
Circulation and vorticity
* By Stoke’s theorem
K:f u-dl = (V><u)~ndS:/ Q- ndS,
C(t) S(t) S(t)
where S(t) is a surface whose edges connect with C(t).
Kis zero for all loops if Q is zero in the domain! N
wean
Kelvin’s theorem asserts that
DK {
Dt —
16

If the fluid is incompressible,

D ( \

Du w2 ).
Dt \p )

and the first term in the integral

Du . p. .\
Fl.dl = d[p + ;,z)

also integrates to zero, proving the result
DK
Dt

This means that if K is zero at some time it will remain so for all 7.
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Back to the solutions of Laplace’s equation

Superposition

« Since the Laplace equation is a linear homogeneous differential
equation, the linear combination of two or more solutions of the
equation must also be a solution.

* For example, if ¢, and ¢, are each solutions of the Laplace
equation, then A ¢, + B ¢, are also solutions, where A and B are
arbitrary constants.

* By extension, you may combine several solutions of the Laplace
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Planar flows: Stream function

* For planar incompressible flows we can also define the stream
function, .
Incompressible, two-dimensional stream function in Cartesian coordinates:

W W
u=— and v=-—
ay

* Curves of constant 1 are streamlines of the
flow (see later)

f ¢ from one streamline
width between the two sf

20

Planar and axisymmetric flows

The stream function is defined for incompressible (divergence-
free) flows in two dimensions — as well as in three dimensions
with axisymmetry (2 independent variables).

The flow velocity components can also be expressed as derivatives
of the scalar stream function.

Incompressible, planar stream function in cylindrical coordinates:
10y ay

u,=—— and U=
Toraof or

Incompressible, axisymmetric stream function in cylindrical coordinates: |
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Equation for the stream function

* For irrotational flows in 2D, the stream function obeys the Laplace
equation:
V2 = 0.

« Thus in potential 2D flow, both the flow potential and the stream
function are solutions of the Laplace equation.

« Lines of constant flow potential are perpendicular to the streamlines
(easily checked).

* In axisymmetric flows the stream function obeys a linear equation
but that is no longer Laplace’s equation.

equation, and the combination is guaranteed to also be a solution.

1 9 1
P L A K. 2
raz - roor Axisymmeric
Uniform (free) stream
,
¥
Uniform strean: pM_, B R
o ay ay ox 2 "
Y —
L7
" pood et L
-
Velocity potential function for a uniform stream: é=Vr b 4 =0 1

Strean

or a uniform stream: v=w

Unif = Vrcosd ¢ =Vrsin

Uniform stream inclined at angle
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Line source or sink

Let the volume flow rate per unit depth, be the line source
strength, m

v
= = 2mru,
L

The components of the velocity are

_w_iw_vn )

Line source: u, Uy =—
ar 2a@r r
W, - LIS /4
=m0 s WSSO > e =O) ==
With solution viL
f(6) = ——0 + constant
2
) . VIL
Line source at the origin: and ¢ =——0
2

Line source or sink at an arbitrary point

P
=

VIL VIL ——a
¢=—hn=—hVEx-a*+ @y -

27 27
Line source at point (a, b):

VIL y
0, = S —arctan
2 x
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Superposition of a source and sink of equal
strength

L
Line source at (~a, 0): S0, where 6, = arctan

Similarly for the sink,

Line sinkat (¢, 0: ¥y where 0,

Composite stream function: Y=ty =

Final result, Cartesian coordinates

Final result, cylindrical coordinates

Line vortex

The radial component of the velocity is zero and

i
Linevortex:  u, = —

10y
1% =
X o 2mr

or rab

-l _ W _ T

Uy

where I = 2mruy, is the circulation, around a loop of radius r.

Then,

Line vortex at the origin

Line vortex at point (a, b): i
—InVix —af + oy — bF
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Superposition of a line sink and a line vortex
at the origin

The stream function is
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T T
. 24 06
S ition: v, r, 05
uperposition: = 2 i
Bl
. . y.m 04
with streamlines 0
((V/L)ﬂ - Zmll) 02
Streamlines: r=exp|——— 03
T o1
S~——1 02 0
ol f
-2 T T T
2 4 0 1
xm
19 VIL a r
Velocity components: y=lw Vi W _ T
re0  2mr or  2ar

Note that velocity diverges at the origin, which is a singularity (unphysical).

Doublet: line source and sink close to origin

We have seen before (slide 23) that

—UL _ 2asind
Composite stream function: ¥ = S arctn 2z

By Taylor expanding the arctan around zero:

—a(VIL)r sin

Stream function as a = 0: =
- @)

Let a tend to zero at constant doublet strength K, to find

a(VIL) sin 0 [}
Doublet along the x-axis = 7% = _gSnf

T

cos 0
Doublet along the x-axis é=K—
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Superposition of a uniform stream and a doublet:
Flow over a circular cylinder

sinf
Superposition: ¢ =V, rsing— K%
For convenience we set §y = 0 when r = a
Doublet strength: K=Vad

- . a
Alternate form of stream function: ¥ =V,_sin 5(7 - T)
& = sin a(r* 1)
. ™

o = V(¥ + 4sin’ 0

= 25in0

Vuco,\'ﬂ(l - uy = —d—‘f N —szine(l +

3D Flow

* The 1/R potential ¢ = - Tgk is a solution of Laplace’s equation in
3D
* It describes isotropic flow with velocity Q/4xR’

« If Q>0itis a source and it is a sink otherwise. Q is the discharge rate.
* Free stream potential ¢ = V%
« Superposition of the two gives

12 Q

) 2
0 _cos O, (u3 + u3)'’" = S sin 6,
4aR~ 4R

u =U+

31

32

* Or in spherical coordinates,

Q

R uy = — Usin 6.

ug = Ucos 6 +

g g
g ::Efzi%l,

(@) )

Figure 4.2 Lines of flow past (a) a point source, (b) a point sink. The surface
of revolution X encloses all the fiuid coming from, or destined for, the source
or sink respectively.

Reminder

Spherical
coordinates
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Excess pressure and force

The excess pressure vanishes at infinity where the velocity is that of the free stream.
Then Bernoulli gives for the dynamical pressure:

_pUQcos O p0? .
4aR® 322°R*

1
P =AU = - ) =

The total force in the 1 (stream) direction exerted by the excess pressure on the fluid
inside a spherical control surface, centred at O, of arbitrary radius R, is

- { p*2R? sin 6.0 cos 0,
o

where 2:7R”sin 6 d6 is the area of a ring shaped element on the surface of the
sphere and cos# gives the projection of the force in the 1 direction.

The total force is, after integration,
Q cos Osin 0

Lovo | (cosz 0sing + .
2 N 82RU

1
do = - pUQ.
) 3ﬂQ
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Newton’s second law
for a control volume

Fixed CV: SF-

Rate of change
of momentum
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Rate of change of momentum

* The total force is equal to the rate of change of momentum in the 1
direction of the fluid, within the sphere:

2R sin 8 d6
o

- [U,C[,\,,+LQI'+7M+QL?~'
4 677
4

27R? sin 0.d0
| 2R sin

= Snvo.
* There is then an additional force on the fluid in the 1 direction of
magnitude PU
* This has to be exerted by the source (sink) and thus the source (sink)
will experience a reactinn forca

F = pUQ.
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Excess pressure and force

* Assuming that the excess pressure vanishes at infinity, where u also
vanishes, the excess pressure at P is (Bernoulli),

_ pQ*sin® 0 cos* 0

(0} =
i Srd

« The fluid to the left of the bissecting plane experiences a force (to the
right) due to this excess pressure, given by

- J p*{0)27d tan 6 d(d tan 0) = 22 J”“sin‘ 0cos 0do = P2
0 4ad” |, 167d”
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Analytical solutions of Laplace’s equation

(i) Two-dimensional circular polar coordinates (r, 6)
In this system Laplace’s equation becomes
af a Fx
r ;7’ Ir 'i—ﬂ + % =0.
Single-valued solutions in which the variables are scparated can readily be found.
They are:
¢ = constant,
¢ < ¢y = Inr, (42
¢ < ¢, = r"cos (nf), or ¢ =, =r"sin (nd)
[n=+1. %2, £3 etc.].

¢ = constant + Ayp, + (A, p, + Baip)

Two equal sources

Velocity at one source, due P cos 6
to the other: Vi
U= Ql4n(2d) -

On the plane bissecting the line joining the two sources the normal component of the
velocity vanishes. The radial component (in the direction of OP), add and are given by:

2Qsinf
4a(d sec 0)*
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Since the effect of the flow is to transfer fluid to infinity from whatever reservoirs
supply the sources, and since the fluid at infinity, like that in the reservoirs, has
zero momentum, the total momentum of the fluid on either side of the bisecting
ptane does not change with time. Tt follows that the whole of the force calculated
above must be transferred by the fluid to the source enclosed within it. Hence the
source on the left is drawn to the right (and vice versa), and the strength of the
attraction is

pQ*
= pUQ.
6~ PYY
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(ii) Complex potentials in two dimensions

A powerful general method for handling Laplace’s equation in two dimensions
rests on some elementary results in the theory of functions of complex variables.
Let

¢ + iy = fix; + ixa}, (4.25)

where ¢ and y are both real and where f{Z} is any sensible, differentiable,
function of its argument Z. Then

$O

e
0,59
axy  dx3

7oy

i.e. ¢ isasolution of Laplace’s equation in the two-dimensional space covered by
the cartesian coordinates (x;. x,), and the same is true of y. Now

ap ayp 0P oy

oy B¢y

axy ax;  0x; 0xy

=i 1([,)3 + i(f’)z

=0

(Vo) (V) =
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Hence the two-dimensional gradient vectors V¢ and Vi are everywhere ortho-
gonal to one another, and, since they are orthogonal to the contours of constant ¢
and vy respectively, these contours must be orthogonal to one another also. If we
choose to regard the quantity ¢ defined by (4.25) as a two-dimensional flow
potential such that V¢p = u, then u is tangential everywhere to the contours of
constant . and these contours therefore serve to describe the streamlines
associated with ¢ or, in cases of steady flow, the lines of flow.

(iv) Three-dimensional spherical polar coordinates (R, 0. ¢)

Laplace’s equation in spherical polars has separated solutions which form a
complete set, like the two-dimensional solutions described by (4.22) and (4.23).
We need not list them fully here, because we shall be concerned only with
problems in which the flow is axially symmetric, i.e. in which the flow potential
does not vary with the azimuthal angle ¢.” In these circumstances Laplace’s
equation simplifies to

i(lelﬂ) +

n 0 8—¢) =0,
aR aR/ a0,

and its separated solutions may be written as
¢ < ¢ = R"P,{cos 0}, 4.27)
¢ = ¢, =R "D P, {cos 0}, (4.28)
[n=0,+1, +2, +3 etc.].
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The Legendre functions P,{cos §} may be expanded as polynomials in their
argument, and we shall need the following expressions in particular:

Py{cos 6} = 1, (4.29)
Pi{cos 6} = cos 0, (4.30)
P,{cos 6} = %(3 cos” 0 — 1), (4.31)

The full functions ¢, and ¢, are properly called zonal solid harmonics. They are
orthogonal to one another, and all other solutions of Laplace’s equation in three
dimensions which share their symmetry (or asymmetry) may be expressed as
linear combinations of them [cf. (4.24)].

Some of the solutions described by (4.27) and (4.28) are of course trivial. Thus
¢y = 1 for all values of R and 6. As for

¢ = Rcos 0 = x;
and

o = R
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Dipolar flow

The function ¢ multiplied by 4,m/47 describes the field around a monopole
of strength m at the origin.

dipole poles

A magnetic dipole of strength M = mAx; produces the dipolar field:

apte) (1. e v M gy
o bo (x) (1 A“] + 9 {xb [N |- 1M gy \X).
4z an, 20T a2 e

Or in spherical polar coordinates (see figure):

[cos —sin g 2P0 s cos 0 = M g

Mg ) _ samAr, 1 M
4\ aR R a6/ 4r R 4
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Higher multipoles

Thus in so far as ¢ may be described as monopolar ¢ is dipolar, and since ¢
may be related in a similar fashion to 9¢/dx, — there exists a useful recurrence
relation

[ =-— cos @

1 0, 1 g, _
n+1 ox, n+1 IR

which may readily be shown to hold for all values of n — ¢, is quadrupolar. This
terminology derives from magnetostatics and electrostatics, but it is used in fluid
dynamics too.
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Potential flow around a sphere

Figure 4.0 Coordinute system for discusssion of fow past 4 sphere The
the left with velocity 0" and the fuid at large distances from
<0 the right with uniform velocity L. Their relative velocity

Expansion of the solution in zonal spherical harmonics

@ =2(A0n + ALdy)
Boundary condition that at infinity in the & = 0 the velocity is that of the free stream
impliesthat 47 = ¢~ and 4} = Oforalln > 1.

At the surface of the sphere R = g, contact between the sphere and fluid require that
the radial component of the fluid velocity is the same as that of the sphere

(2~ — v eoso.
AR
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The latter implies that the potential has no monopolar or higher order multipolar terms,
§ = Aj + URcos 0+ AR cos 0,
We can set the first term to zero without loss of generality and then

U.
=

6= UReos 0+ 2avu + 07

“The corresponding velocity components of the fluid arc

_ _ A s
g = = Urcos 6= l’(‘R) cos 0
m,=%%: - U”«mﬂ*%{,’\‘\%’]‘\in 0,

Figure 4.7 (a) Lines of flow and equipotentials round a stationary sphere
(U = 0). (h) The seme flow pattern in a frame of reference such that U" — 0
and the sphere is moving.

Excess pressure

With p*defined to be zero at large distances, we have

|
P AU - ),

sothat in contact with the sphere

Because the excess pressure at R = a is completely symmetrical about the
equatorial plane, a sphere which is in uniform motion relative to fluid experiences
no force, apart from its own weight and the hydrostatic upthrust which we have
suppressed. This is an example of d’Alembert’s paradox
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Lift & drag forces

* The component of the resultant pressure and shear forces that acts
in the flow direction is called the drag force (or just drag), and the
component that acts normal to the flow direction is called the lift
force (or just lift).

Drag force: Fp ] dFy = ’ (~Pcos + 7, sin 6) dA
A A
and
Liftforce: Fo= [ (Psind + 7, cos0) aa
A

Lift on a
half-

P
v, sphere
—
> Pr * Due to high speed

') flow at the top of the
sphere, we expect a low
pressure at the top of
the sphere. This pressure
results in a lift force on
the hemsiphere.
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D’Alembert’s
paradox: In
irrotational flow,
== the
Acrdymanic dng =0 aerodynamic drag
force on any body

Irrotational flow approximation

Real (rotational) flow field

e —— of any shape
- % immersed
S in a uniform stream
Aerodynamic drag # 0 is zero.
(b)
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The Magnus effect (rotating cylinder)

Superposition of solutions of Laplace’s equation gives for the flow potential

Ko

o =U wsﬁ[‘/ + =

and the velocity

K3
2ar

= Uyeos (1 - == Upsino 1+ %) +
'
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The flow lines can be computed from the stream function,

w=Using|r— o«
Uy

Bernoulli’s theorem gives for the excess pressure:

1 2 > 1
3 UE — ) = 5

2

PUIK.
a

1o .
+ 5PV = 4sin® 0) + 3 sin 6.

/ . K.
— 20, sin 6 + 2—‘] =
\ a

The lift force is
_pUiKy

[ asin? 0do = - pUKs,
ma g

Itis instructive to see how the existence of the transverse force may also be
established by evaluating excess pressure and momentum flux over a control
surface which is far removed from the spindle. Consider, for example, a control
surface in the form of a eylinder, coaxial with the spindle but of greater radius b.
On this surface the excess pressure is

pUT -1 — ),

in which the relevant term is

pUKs ()

n
2xb

sin 6.

The excess pressure therefore exerts a lift force on the fluid inside the control
surface of magnitude

[ @ o
*zpl/‘/\‘(livw’ (4.58)
per unit length (which reduces to —pU, Ky, of course, when b = a). However, the

rate of change of the contained fluid, in the dirceti f the lift force
and per unit length, is the value at r = b of

" puu(uy 05 0+ y sin ) d6
Lo

[(2.44)]. and when this integral is evaluated using (4.57) it is found to amount to

(4.59)

1 (
3PUK (1

The difference between (4.58) and (4.59) reveals that the fluid must be subject to
an additional force of magnitude plU\K; per unit length, which only the spindie
can exert upon it. Hence the spindle must experience the reaction which (4.55)
describes.
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Outer normal

The pressure and

viscous forces

acting

— - on a two-

/::Zi” T dimensional body
and the

resultant lift, F,

and drag, Fp

forces.

Fp=Fpcosd
Fp=Fgsing
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Drag force

* In areal flow, the pressure on the
back surface of the body is significantly
less than that on the front surface,
leading to a nonzero pressure drag on

the body. In addition, the no-slip
condition on the body surface leads to
a nonzero viscous drag as well.

Wind tunnel test section

P

¢ Thus, the irrotational flow falls short
in its prediction of aerodynamic drag
for two reasons: it predicts no pressure
drag and it predicts no viscous drag.

Moving belt  Drag balance
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