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Potential Flow
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Overview

• For irrotational flow, ∇×𝑉 = 0, which implies that 𝑉 = ±∇𝜙.
•𝜙 is a scalar field called the potential flow function.

• If the fluid is incompressible, then the continuity equation 
implies that ∇ ) 𝑉 = 0.
• In this case, the potential flow function satisfies the Laplace 

equation, ∇!𝜙 = 0.

•We can obtain many velocity fields using the techniques
used to solve Laplace’s equation.
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Flow potential

Consider,

𝜙 is a single valued function iff

which is equivalent to 

meaning that, the flow is irrotational (i.e. the vorticity is zero).

For irrotational flows, the velocity field is the gradient of a scalar flow potential𝜙:

and two similar eqs. by
exchanging 1 or 2 by 3.

with similar eqs. for 
components 1 and 2.
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Velocity field
Given the flow potential, the velocity field is obtained by taking its gradient (recap): 
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Flow potential, incompressible flow

• From the continuity equation, we have

• If the flow is incompressible, then

i.e., the flow potential is a solution of Laplace’s equation.
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Example (schematic)

∇!𝜙 = 0

∇!𝜙 = 0
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Examples (solutions of Laplace’s equation)

Airfoil in a free stream

Cylinder in a free stream
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Examples from MFM (page 271)

Comparison of potential flow theory and experiments (hele-shaw cell) 
and experiments for flows with Re=104 .
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Back to Laplace’s equation

In cartesian coordinates

In cylindrical coordinates

Spherical and mixed coordinates may also be useful.
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Cylindrical and spherical coordinates
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• The beauty of this is that we have combined three unknown velocity components (e.g., u, v, 
and w) into one unknown scalar field 𝜙, eliminating two of the equations required for a 
solution.

• Once we obtain a solution, we can calculate all three components of the velocity field.

• The Laplace equation is well known since it shows up in several fields of physics, applied
mathematics, and engineering. Various solution techniques, both analytical and numerical, 
are available in the literature. 

• Solutions of the Laplace equation are dominated by the geometry (i.e., boundary
conditions).

• The solution is valid for any incompressible fluid, regardless of its density or its viscosity, in 
regions of the flow in which the irrotational approximation is appropriate
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Pressure

Of course we still need a dynamical equation to calculate the pressure field.
This will be given by the Euler equation (this is the form of the Navier-Stokes
equation for irrotational flow – see later). 

If gravity is the only body force, then

Or in its integrated form, the Bernoulli equation
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Since the flow is irrotational, we can apply Bernoulli to ANY two points in the
flow domain.
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Why are the solutions of Laplace´s equation
useful (at all) ?
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Kelvin’s circulation theorem

• A fluid that is vorticity free at a given instant is vorticity free at all
times.
• Demonstration: see Faber 120-122 (you may skip this on a first

reading)

• In three dimensions the conservation of vorticity (which corresponds
to the conservation of angular momentum in mechanics) takes a 
somewhat subtle form.

• The circulation of a velocity field is defined to be

where the line is a closed loop which moves with the fluid.
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Circulation and vorticity

• By Stoke’s theorem

where S(t) is a surface whose edges connect with C(t).

K is zero for all loops ifΩ is zero in the domain! 

Kelvin´s theorem asserts that

𝐾 Ω

𝐷𝐾
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Demonstration
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The loop moves with the flow and thus

The second term is the relative velocity of two nearby
points on the loop and can be written as 

The second term integrates to zero and the first can be re-written using Euler
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If the fluid is incompressible,

and the first term in the integral

also integrates to zero, proving the result

This means that if K is zero at some time it will remain so for all t.
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Back to the solutions of Laplace’s equation
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Superposition

• Since the Laplace equation is a linear homogeneous differential
equation, the linear combination of two or more solutions of the
equation must also be a solution. 
• For example, if𝜙1 and 𝜙" are each solutions of the Laplace 

equation, thenA𝜙# + B𝜙" are also solutions, where A andB are 
arbitrary constants. 
• By extension, you may combine several solutions of the Laplace 

equation, and the combination is guaranteed to also be a solution.
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Planar flows: Stream function

• For planar incompressible flows we can also define the stream
function, 𝜓.

• Curves of constant𝜓 are streamlines of the
flow (see later)
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Planar and axisymmetric flows

The stream function is defined for incompressible (divergence-
free) flows in two dimensions – as well as in three dimensions
with axisymmetry (2 independent variables).

The flow velocity components can also be expressed as derivatives
of the scalar stream function. 
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Equation for the stream function

• For irrotational flows in 2D, the stream function obeys the Laplace 
equation:

∇!𝜓 = 0.

• Thus in potential 2D flow, both the flow potential and the stream
function are solutions of the Laplace equation. 

• Lines of constant flow potential are perpendicular to the streamlines
(easily checked). 

• In axisymmetric flows the stream function obeys a linear equation
but that is no longer Laplace’s equation.
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Uniform (free) stream
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Line source or sink
Let the volume flow rate per unit depth, be the line source
strength, m

With solution

The components of the velocity are 
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Line source or sink at an arbitrary point
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Superposition of a source and sink of equal
strength
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Line vortex
The radial component of the velocity is zero and

where Γ = 2𝜋𝑟𝑢" , is the circulation, around a loop of radius r. 

Then,

28

28

Superposition of a line sink and a line vortex
at the origin
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The stream function is

with streamlines

Note that velocity diverges at the origin, which is a singularity (unphysical).
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Doublet:  line source and sink close to origin
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We have seen before (slide 23) that

By Taylor expanding the arctan around zero:

Let a tend to zero at constant doublet strength K, to find
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Superposition of a uniform stream and a doublet: 
Flow over a circular cylinder
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3D Flow

• The 1/R potential is a solution of Laplace´s equation in 
3D 
• It describes isotropic flow with velocity

• If Q > 0 it is a source and it is a sink otherwise. Q is the discharge rate.

• Free stream potential

• Superposition of the two gives
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• Or in spherical coordinates,
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Reminder

Spherical 
coordinates
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Excess pressure and force 
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The excess pressure vanishes at infinity where the velocity is that of the free stream. 
Then Bernoulli gives for the dynamical pressure: 

The total force in the 1 (stream) direction exerted by the excess pressure on the fluid
inside a spherical control surface, centred at O, of arbitrary radius R, is

where is the area of a ring shaped element on the surface of the
sphere and cos𝜃 gives the projection of the force in the 1 direction.

The total force is, after integration,
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Newton´s second law 
for a control volume

36

36



7

Rate of change of momentum

• The total force is equal to the rate of change of momentum in the 1 
direction of the fluid, within the sphere:

• There is then an additional force on the fluid in the 1 direction of
magnitude
• This has to be exerted by the source (sink) and thus the source (sink) 

will experience a reaction force  
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Two equal sources
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On the plane bissecting the line joining the two sources the normal component of the
velocity vanishes. The radial component (in the direction of OP), add and are given by:

𝑂𝑃 = 𝑟 =
𝑑

cos𝜃 = 𝑑 sec𝜃Velocity at one source, due
to the other:
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Excess pressure and force

• Assuming that the excess pressure vanishes at infinity, where u also
vanishes, the excess pressure at P is (Bernoulli),

• The fluid to the left of the bissecting plane experiences a force (to the
right) due to this excess pressure, given by
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Analytical solutions of Laplace’s equation
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Dipolar flow
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The function𝜙#$ multiplied by describes the field around a monopole
of strength m at the origin.

A magnetic dipole of strengthM=𝑚∆𝑥% produces the dipolar field:

Or in spherical polar coordinates (see figure):
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Higher multipoles
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Potential flow around a sphere
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Expansion of the solution in zonal spherical harmonics

Boundary condition that at infinity in the 𝜃 = 0 the velocity is that of the free stream
implies that and𝐴&' = 0 for all 𝑛 > 1.

At the surface of the sphere R = a, contact between the sphere and fluid require that
the radial component of the fluid velocity is the same as that of the sphere
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The latter implies that the potential has no monopolar or higher order multipolar terms,

We can set the first term to zero without loss of generality and then
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Excess pressure
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With p*defined to be zero at large distances, we have
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Lift & drag forces

• The component of the resultant pressure and shear forces that acts
in the flow direction is called the drag force (or just drag), and the
component that acts normal to the flow direction is called the lift
force (or just lift).
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Lift on a 
half-
sphere
• Due to high speed 
flow at the top of the 
sphere, we expect a low 
pressure at the top of 
the sphere. This pressure 
results in a lift force on 
the hemsiphere.
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D’Alembert’s 
paradox: In 
irrotational flow , 
the
aerodynamic drag 
force on any body 
of any shape 
immersed
in a uniform stream 
is zero.
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The Magnus effect (rotating cylinder) 
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Superposition of solutions of Laplace’s equation gives for the flow potential

and the velocity
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The flow lines can be computed from the stream function,

Bernoulli’s theorem gives for the excess pressure:

The lift force is
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The pressure and 
viscous forces 
acting
on a two-
dimensional body 
and the
resultant lift, FL
and drag, FD 
forces.
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Drag force

• In a real flow, the pressure on the 
back surface of the body is significantly 
less than that on the front surface, 
leading to a nonzero pressure drag on 
the body. In addition, the no-slip 
condition on the body surface leads to 
a nonzero viscous drag as well. 

• Thus, the irrotational flow falls short 
in its prediction of aerodynamic drag 
for two reasons: it predicts no pressure 
drag and it predicts no viscous drag.
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